Skip to main content

Biography (只提供英文版)

  • Chair Professor in Department of Computer Science at City University of Hong Kong
  • Research interests include cloud and distributed computing systems, computer networks and communication, and secure data sharing and privacy-preserving computing for AI and Machine Learning
  • SRFS project — to develop new technologies to ensure data privacy and security in federated learning. As federated learning trains the model in a distributed fashion, some security problems may occur. This research will develop secure proof-of-data and proof-of-training protocols for federated learning platforms to ensure the training output is indeed generated from the prescribed algorithm over the certified data
  • Awards and Honours:
    • RGC Senior Research Fellow (2024)
    • IEEE TCDP (Technical Committee on Distributed Processing) Outstanding Service and Contributions Award (2024)
    • ACM Distinguished Member (2018)

Project Title (只提供英文版)

  • Robust Aggregation, Proof-of-data and Proof-of-training in Federated Learning

讚詞

賈教授是一位傑出的科學家,他的研究興趣涵蓋雲端和分散式計算系統、計算機網絡與通信,以及針對人工智能的安全數據共享與隱私保護計算。在他超過30年的學術生涯中,已在相關領域的頂尖期刊、會議上發表了超過450篇文章,並培養了超過30名博士生。他曾多次在競爭激烈的會議中獲得最佳論文獎,並於2024年榮獲IEEE TCDP傑出服務與貢獻獎。他是IEEE院士及ACM傑出成員。

 

賈教授領導的SRFS項目旨在開發新技術,確保聯邦學習中的數據隱私與安全。聯邦學習是一種分佈式機器學習方法,訓練過程發生在數據本地端。由於數據從不離開客戶端,聯邦學習被視為最佳的數據隱私與安全保護方法之一。然而,此特性導致聯邦學習面臨幾個主要問題,包括「搭便車」、「懶惰訓練」和「投毒攻擊」。為此,該項目將開發數據證明和訓練證明協議,以確保客戶端的訓練結果確實來自於經過認證的數據,並且是由規定的訓練算法生成的。

 

如果該項目成功,將為大規模分佈式機器學習開闢新的前沿,使全球分佈的數據能夠在其本地端充分參與訓練。這將真正釋放數據的力量,並將人工智能模型的性能提升到新的高度。

得獎者短片