Biography (只提供英文版)
- Chair Professor in Department of Computer Science at City University of Hong Kong
- Research interests include cloud and distributed computing systems, computer networks and communication, and secure data sharing and privacy-preserving computing for AI and Machine Learning
- SRFS project — to develop new technologies to ensure data privacy and security in federated learning. As federated learning trains the model in a distributed fashion, some security problems may occur. This research will develop secure proof-of-data and proof-of-training protocols for federated learning platforms to ensure the training output is indeed generated from the prescribed algorithm over the certified data
- Awards and Honours:
- RGC Senior Research Fellow (2024)
- IEEE TCDP (Technical Committee on Distributed Processing) Outstanding Service and Contributions Award (2024)
- ACM Distinguished Member (2018)
Project Title (只提供英文版)
- Robust Aggregation, Proof-of-data and Proof-of-training in Federated Learning
赞词
贾教授是一位杰出的科学家,他的研究兴趣涵盖云端和分散式计算系统、计算机网络与通信,以及针对人工智能的安全数据共享与隐私保护计算。在他超过30年的学术生涯中,已在相关领域的顶尖期刊、会议上发表了超过450篇文章,并培养了超过30名博士生。他曾多次在竞争激烈的会议中获得最佳论文奖,并于2024年荣获IEEE TCDP杰出服务与贡献奖。他是IEEE院士及ACM杰出成员。
贾教授领导的SRFS项目旨在开发新技术,确保联邦学习中的数据隐私与安全。联邦学习是一种分布式机器学习方法,训练过程发生在数据本地端。由于数据从不离开客户端,联邦学习被视为最佳的数据隐私与安全保护方法之一。然而,此特性导致联邦学习面临几个主要问题,包括「搭便车」、「懒惰训练」和「投毒攻击」。为此,该项目将开发数据证明和训练证明协议,以确保客户端的训练结果确实来自于经过认证的数据,并且是由规定的训练算法生成的。
如果该项目成功,将为大规模分布式机器学习开辟新的前沿,使全球分布的数据能够在其本地端充分参与训练。这将真正释放数据的力量,并将人工智能模型的性能提升到新的高度。
得奖者短片