Biography (只提供英文版)
- Chair Professor of Economics at The Hong Kong University of Science and Technology since 2005
- Has made seminal contributions in numerous areas of econometrics, especially in developing quantitative tools to evaluate the effects of public policy and social programs
- SRFS project — to address the knowledge gap regarding sample selection bias with an innovative approach, which brings together insights and benefits from two different perspectives and develops effective tools to better address the concerns of policymakers
- Awards and Honours:
- RGC Senior Research Fellow (2021)
- Econometric Theory Plura Scripsit Award (2019)
Project Title (只提供英文版)
- Quantile Regression Subject to Sample Selection with Continuous and Binary Outcomes
赞词
陈松年教授在微观计量经济学领域做出原创性贡献,陈教授持续活跃于国际学术界,应邀参与各类会议并做主旨演讲。他曾担任香港科大赛马会高等研究院高级研究员及中研院经济所学术咨询委员会委员。陈教授作为RGC高级学者主持一项RGC研究课题:离散与连续结果分位数样本选择模型的识别与估计。
样本选择模型与分位数回归模型广泛应用于经济学与其他社会科学,尤其在公共政策评估与因果效应的实证研究。样本选择是收入差距研究中的常见问题:在数据样本中,研究者只观察到在职人士收入,直接基于可观察收入数据将会扭曲估计结果。样本选择模型旨在矫正这一扭曲所带来的偏差。分位数回归相较传统回归分析也具备其独特的优势。传统公共政策评估与因果效应估计局限于识别“平均效应”,分位数回归则致力于识别政策效应的整体“分布”特征。例如,在减贫研究中,相较于关注“均值效应”,识别公共政策对尾部收入的效应就显得更为恰当。
尽管非随机的样本选择现象无处不在,但从分位数回归角度研究样本选择问题的工作依然屈指可数。因此,该课题期望在此方向做出突破性探索。